
On the Conjecture of Hardy & Littlewood
concerning the Number of Primes of the

Form n2 + a

By Daniel Shanks

1. Introduction. In a famous paper, [1], Hardy and Littlewood developed a

number of conjectures concerning the twin primes, the Goldbach problem, and

other unsettled questions. One of these, Conjecture F, concerned the number of

primes of the form Am2 + Bm + C. We reword this conjecture, and at the same

time reduce its generality somewhat, as follows:

Conjecture. // a is an integer which is not a negative square, a p* — fc2, and if

Pa(N) is the number of primes of the form n + a for 1 ^ n ^ N, then

(1) P«(N)~\haJ      :
dn

log n

where the constant ha is the infinite product

(2) Ä„=n(i-(—) -^-r)
w.fa \ \ W / W —  1/

taken over all odd primes, w, which do not divide a, and for which (—a/w) is the

Legendre symbol.

In the trivial cases, a = —A;2, since (k2/w) = +1 for every w, we have ha = 0

on the one hand, and on the other there can be at most one prime of the form

n2 — k* = (n — k)(n + A;). For any other a, ha > 0, and the conjecture indicates

that there are infinitely many primes. But for no a has this been proven.

In particular, for a = 1, since ( —1/w) equals +1 or —1 according as w =

4m + 1 or Am — 1, we have

(3)    h = (1 + è)(l - i)(l + i)(l + tV)(1 - tV) • • • = 1.37281346 • • •

and therefore (1) implies that

(4) P^N) ~ 0.68640673 f
Ji

dn

log n '

A. E. Western [2] verified that the number of primes of the form n2 + 1 agreed well

with the right side of (4) up to N = 15,000.

In a recent paper [3] a sieve method was developed for factoring numbers of

the form n +1, and more generally of the form n + a, and it was

shown that the good agreement in (4) continues to hold out to N = 180,000;

(iV2 + 1 = 32,400,000,001). This verification, however, was not applied to (4)
directly but to the related formula, (7), given below.

Let ña(N) be the number of odd primes, q, which are ^N, which do not divide
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a, and for which (—a/q) = — 1. These are the primes which never divide n2 + a.

It is well known that

(5) i.(«~jr^-
2 J2   log n

and therefore (1) can be rewritten as

(6) fOT      *"

Likewise (4) can be rewritten as

(7) ^S ~ 1.37281346 • • • .
*i(iv)

Since, in [3], we had Px( 180,000) = 11223, #i( 180,000) = 8178, and 11223/8178 =
1.37234, the agreement with the right side of (7) was even better than could be

expected.

It is clear that the Tra(N) in (6) could be replaced by the asymptotically equal

§ir(iV) or by na(N), (for the latter number we count the p's such that

(—a/p) = +l).But (6) as it stands is to be preferred for two reasons. First, Ta(N)

f"
is generally much closer to J /    dn /log n than are either of the other two counts.

•>2

See [4, sec. 10 and Table 7] for a discussion of the case a = 1. Second, the ratio

in (6) has a simple geometric interpretation in the algebraic number field Ä(-\/—a).

See [3, p. 82] for a discussion of the case a = 1, the Gauss plane.

In the present paper [5] we first develop an interesting and rapidly converging

formula for computing the ha and we tabulate these constants for a = —4(1)4.

We then present short tables of Pa(N) and ira(N) for a = ±2, ±3, +4, and for

AT = 10,000(10,000)180,000 which show that (6) also gives good agreement in

these five cases. Finally we present an elementary (sieve) argument which makes

it plausible that the Hardy-Littlewood conjecture is true for every a. Further, an

analysis of this computation enables us to isolate the essential difficulty in obtaining-

a proof.

2. The Right Side of (6). To compute the ha we will want the following

Lemma. For \ x |<|,

where the exponents b(s) are given by 6(1) = 6(2) = 6(3) = 1, 6(4) = 2, 6(5) = 3,

6(6) = 5, and, in general, if d is an odd divisor of s and /¿(d) is its Mobius func-

tion, then

(9) 6(«) = ¿ £ Ad)2"d.
¿S    d

Examples of (9) : A.) If s = p, an odd prime, d = 1 or d = p and [6]

(9a) b(p) = (2P - 2)/2p = (2'-1 - I)/p.
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B.) If s = 2*, then d can only equal 1 and

(9b) 6(s) = 2'~1/s.

Therefore 6(7) = 9 and 6(8) = 16.

Proof of the Lemma. After taking the logarithm of both sides of (8),

(10) -In (1 - 2x) = £ b(s) In [(1 + x)/(l - x')],
•—i

we expand both sides in Maclaurin series and identify the corresponding coefficients.

This yields the condition, for s = 2km, with m odd,

Now applying the Möbius inversion formula we obtain (9). Since from (11) we

also have 6(s) ^ 2*/2s it follows that (10) converges if | x \ < J and the steps may

be reversed to yield (8).

Now for any a ?¿ —k let p< be the odd primes such that (—a/p) = +1, let

gt be the odd primes such that (—a/q) = —1, and let n = 2, r2, r3, • • • , rc be

the (finite number of) primes which divide 2a. Further, for s = 1, 2, 3, • • • , let

the product being taken over the p's and q's in numerical order. Finally

for s = 2, 3, 4, • • • , let

(13) Us) - r(«) fl (i - o

where f (s) is the Riemann zeta function.

Theorem. If

(14) /„(0) = f.(2)/La(l) andKam(s) = U2s)/La(s)Us)

for s = 2, 3, 4, • • • , then

(15) ha=f0m-fl[K0m(s)r\

where b(s) is given by (9). More generally, for more rapid convergence, we may select

a positive integer u and define

(16)    >" - >•" Ô 0 - S5PTÎ5) - *" S (' -1) (^)■
and

( 17)      Kaw (,) = K™(s) ft f 1 + -r-^¡) = Kaw (•) n (K^) •
,_1 \      Pi' - 1/ <=1 \p<' - 1/

Then for every u = 0, 1, 2, • • • ,

(18) Aa=/a(U)n[#a(U)(s)]MS).
»=2

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



324 DANIEL  SHANKS

bU)

Proof. For every s = 2, 3, 4, • • ■ ,

and we easily verify that

(i9) 1 = *°<0)(s)n(^)-

We likewise find that

(20) 4..r.n(i-?)(^)

so for any positive integer m, we have from (19) and (20)

^rnicwr. ft (i-fK^Vn ft (£±4)
»-2 i=u+l   \ Pi/   \Pi   —   1/      «-2 i-u+1  \P¿"   —   1/

Since m is finite the order of the products may be changed to give

m oo       / rt\        m    /     a    ■     i\6(<)

*. = /.w n iif.wwr • n (1 - £) • n fe^) •
«=2 <=«+i \ p,-/    »=1 \Pi* — 1/

Now every p > 2, and we may therefore use (8) with x = l/pt- to obtain

m oo oo        /     s i\o(«)

*. = /.w n [^(u,(S)]6(s) • n n fe^i) .
«=2 i-u+1 «-m+1   \Pt    T"   1/

But it may be readily seen that the double infinite product on the right converges

(monotonically increasing) to 1 as m —» », and it thus follows that the right side

of (18) converges (monotonically decreasing) to ha as m —» ».

The computation of the ha from (18) requires knowledge of the La(s). Now

every La(s) has a Dirichlet series
00

La(s) = £ dn(a)n~'
n=l

with real periodic coefficients. Specifically we have

Li(«) = 1 - 3- + 5- - 7- +- + -,

£.(«) = 1 + 3~8 - 5- - 7- + + --,

L-2(s) - 1 - 3- - 5" + 7~s +--+,

(21)
L3(s) = 1 - 5- + 7's - 11- +- + -,

L_3(s) = 1 - 5- - 7- + H"8 +-- + ,

Í4(«) = 1 - 3- + 5- - 7- +- + -.

The L0(l), which enter into /o(0) as defined by eq. (14), may be obtained in

closed form by use of Gauss sums and Fourier series, [7]. Specifically, for a > 0

we have the simple

TT

(22) La(l) = -~ q«
2y/a

where the qa for 1 ¿ a ^ 100 are listed in Table 1.
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Table 1

Qa 9a

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

i
2

1
1
1
2
2
1
2
2
2
3
2
2
4
2
2
4
2
3
4
4
2
3
4
2

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

6
3
2
6
4
3
4
4
4
6
4
2
6
4
4
8
4
3
6
4
4
5
4
4

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

6
4
6
6
4
8
4
2
9
4
6
8
4
4
8
8
3

4
7
4
4

10
6

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

6
8
4
5
8
6
4
9
8
4

10
6
4

12
8
6
6
4
8
8
8
4
8
6
4

Table 2

-4
-3
-2
-1

0
1
2
3
4

0
1.38342429
1.85005441
0
0
1.37281346
0.71306310
1.12073275
1.37281346

The La(l) for negative a are a little more complicated and will not be listed

here. As regards La(s) for other values of s, Li(s) is a well known function, but

except for a few scattered results, [8], values of the other L's do not seem to have

been published. J. W. Wrench, Jr. has computed unpublished tables of L0(s) for

a = ±2 and ±3. With his permission the author used these tables, together with

(18), to compute the four corresponding values of ha in Table 2. The remaining

entries, ä_i = ft_i «■ ho = 0 and hi = hi, are trivial.

The variation of the ha in Table 2 is notable. For example, there should be
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more than two and one-half times as many primes of the form n2 — 2 as of the

form n -f- 2. As a side remark, wenotefrom (15) that/o<0) = 2U2)Vä/irqa is the

leading factor of ha . Thus for a > 0, n + a will therefore have few or many primes

according as qa is large or small (relative to 2\/ä/ir). From Table 1 we see that

there will be few primes for a = 2, 5, 11, 14, 26, 41, 89, and 194, (qm = 20) and
there will be many primes for a = 7, 37, 58, and 163, (qm = 3). The famous func-

tion of Euler, n + n + 41, equals \[(2n + l)2 + 163] and its well-known richness

in primes is thus closely related to the small value of qm • This, in turn, is related

in class number theory to the unique factorization of the integers in the algebraic

number field R(V~  163).

3. The Left Side of (6). Tables of Pa(N) and ifa(iV) for a = ±2, ±3, +4, and
N = lOOfc (k = 1,2, ■ • • , 1800) were computed with an IBM 704 program based

on the sieve method and the p-adic square roots of —a, [3, sec. 9]. At the same

time the prime divisors of n2 + a which do not exceed N were counted, and from

these counts the values of fa(N) are easily obtained. Summaries of these results

are given in Tables 3, 4, and 5. In the last of these, the results for a = 4 are com-

pared with the previous results [3] for a = 1.

4. Both Sides of (6). In Figure 1 we plot Pa(N)/fa(N) versus N together with

the conjectured limits, ha , for a = ±2 and ±3. The cases a = 1 and a = 4, (which

should be asymptotically equal since hi = hi), are not included in this figure for

clarity. If included, these two graphs would intertwine that for the case a = —3.

5. An Elementary Interpretation. The over-all impression of the foregoing results

is that (6) and its equivalent (1) are almost surely true for a = 1, ±2, ±3, 4.

Table 3

P*W) f,(N) Pi(.N)/xi(N) P-10) »_,(#) Pj(iV)/ï.,(2V)

10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000
170000
180000

446
817

1180
1494
1821
2160
2489
2823
3139
3422
3721
4027
4347
4652
4966
5250
5522
5847

622
1134
1632
2117
2580
3051
3478
3942
4378
4798
5229
5649
6090
6516
6945
7347
7767
8192

0.6737
0.7205
0.7230
0.7057
0.7058
0.7080
0.7156
0.7161
0.7170
0.7132
0.7116
0.7129
0.7138
0.7139
0.7150
0.7146
0.7110
0.7138

1153
2140
3087
3977
4824
5643
6464
7296
8083
8888
9681

10500
11304
12086
12828
13628
14397
15134

625
1140
1631
2112
2587
3041
3481
3927
4374
4808
5242
5682
6117
6533
6956
7362
7763
8184

1.8448
1.8772
1.8927
1.8830
1.8647
1.8556

8569
8579
8480
8486

1.8468
1.8479
1.8480
1.8500
1.8442
1.8511
1.8546
1.8492
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Table 4

P*(N) *,(N) P.(2V)/*»(iV) P-i(iV) r-,(AT) P-,(N)/ï-,(lf)

711
1302
1851
2378
2920
3428
3967
4463
4941
5426
5917
6410
6873
7337
7823
8302
8781
9240

616
1136
1633
2112
2575
3041
3490
3937
4373
4806.
5233
5665
6105
6532
6940
7361
7768
8195

1.1542
1.1461
1.1335
1.1259
1.1340
1.1273
1.1367
1.1336
1.1299
1.1290
1.1307
1.1315
1.1258
1.1232
1.1272
1.1278
1.1304
1.1275

850
1569
2238
2903
3550
4168
4796
5442
6049
6664
7253
7874
8491
9073
9663

10236
10799
11354

620
1139
1637
2108
2577
3030
3466
3935
4374
4819
5247
5673
6097
6524
6950
7363
7765
8200

1.3710
1.3775
1.3671
1.3771
1.3776
1.3756
1.3837
1.3830
1.3829
1.3829
1.3823
1.3880
1.3927
1.3907
1.3904
1.3902
1.3907
1.3846

Table 5

Pt(N) i,(N) = ñ(N) Pt(N)/i,(N) Pi(A') Pi(.N)/ri{N) Pi(N)/Pt(,N)

870
1554
2216
2838
3459
4083
4690
5281
5903
6517
7099
7700
8300
8893
9442

10008
10565
11143

619
1136
1633
2117
2583
3038
3485
3933
4364
4808
5247
5675
6103
6531
6941
7361
7770
8178

1.4055
1.3680
1.3570
1.3406
1.3391
1.3440
1.3458
1.3427
1.3527
1.3554
1.3530
1.3568
1.3600
1.3617
1.3603
1.3596
1.3597
1.3626

841
1559
2268
2952
3613
4252
4888
5513
6084
6656
7239
7795
8369
8944
9505

10072
10658
11223

1.3586
1.3724
1.3889
1.3944
1.3988
1.3996
1.4026
1.4017
1.3941
1.3844
1.3796
1.3736
1.3713
1.3695
1.3694
1.3683
1.3717
1.3723

0.967
1.003
1.023
1.040
1.045
1.041
1.042
1.044
1.031
1.021
1.020
1.012
1.008
1.006
1.007
1.006
1.009
1.007

We now offer a theoretical argument in favour of these asymptotic equations for

all a. We will specifically carry it through for a = 1, but the argument is easily

generalized. The case a — 1 is the only one which Hardy and Littlewood treated

in detail. Their computation, however, was deep and function-theoretic. In con-

trast, the present argument is elementary, [9]. It will be assumed that the reader is

acquainted with the n  + 1 sieve which is described in detail in [3].
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PptN)

SfllN)

2.0

P.(N)

CIS)

0.5

n'+3

n£+2

h    =1.850054

h_3= 1.383424

h3 * 1.120733

h2 > 0.713063

50,000 100,000 150,000       200,000
N—►

Fig. 1.—The Hardy Littlewood Conjecture.

Consider the infinite product (3) for hi, not in the form in which it was given

by Hardy and Littlewood, (2),

since this masks its true nature; but in the equivalent form

h

H) R) R) 0-Â) (.-*)
or, even better, as

(23)    h _H) . c-i) (-a)
R)(>-i)R)Fî)(-è)FS)

Now for a suitably large A7' let w* be the greatest prime satisfying w ¿ JV and let

p* be the greatest prime of the form 4m + l which satisfies p ^ N. We write the

corresponding partial product of (23), which approximates hi, as follows:

(24) him N »(-Í)('-P('-¿)-(i-a
Now this approximation to Äi is in turn seen to be approximated (and we will

inquire later as to the degree of the approximation) by N times the ratio of the

primes which remain in two sieves, the Eratosthenes sieve (for all primes) from

n = 1 to n = N2 in the denominator and the n 4- 1 sieve from n2 + 1 = 2 to

n  + \ = N  4-1 in the numerator.
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Without attempting precision at this point—that is, without bounding the

error—we note that in the Eratosthenes sieve one first strikes out the multiples

of 2. This leaves N2(l — §) numbers (with an error of 0 or §). One then strikes

out the remaining multiples of 3 leaving iV2(l — §)(1 — J) numbers (again except

for a possible end-effect correction.) Continuing with the primes 5, 7, • • • , w*

creates the denominator of (24). The latter therefore equals

ir(2V2) - ir(N) + E(N),

the number of primes up to N2 minus the number of primes up to N, with an end-

effects error, E(N), which is not yet bounded. We note that

t(N2) - r(N) ~ ^ AN) ~ Niti(N)

by the prime number theorem.

In the n 4- 1 sieve we first factor a 2 from all numbers where n = 2m 4- 1

leaving iV(l — §) of the numbers (except for an end-effect error). We then factor

a 5 where n = 5m 4- 2 and where n — 5m + 3. This leaves N(l — §)(1 — f)

numbers (except for the end-effect error). Continuing with all primes of the form

4m + 1 ; 13, 17, ■ • • , p* generates the numerator. The latter therefore equals

P(N) - P(VÑ~^T) + e(N),

the number of primes of the form n  4- 1 up to N2 + 1 minus the number of such

primes up to N with an end effect e(N).

Therefore, we may write

(25) h - lim P(N) - P(V*^) + «W>(25) fc-üm *l{N) + E(N)/N

while what we would like to write is

r, y       P(N)
h = Inn —r^-.

w-=o iri(N)

Now by Merten's Theorem the denominator of (24) is asymptotic to N2e~y/log N

where y is Euler's constant [10]. Therefore the end effect, E(N)/N, is not negligible

compared with wi(N). Instead we have

(26) ^^^0.1229 = 2^-1.

If we could show

e(N)
(27) P(N)-P(VÑ^l)~2e-y-1

all would be well, but the difficulty of the problem is such that we cannot even

prove that the left side of (27) is bounded from above. If we could do that, we

would at least have P(N) —» » but even this "weak" result eludes us.

It is of interest to analyze this difficulty. Let

(28) D(N) = P(N) - P(VÑ~^1)
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and

(29) SW). ,(, _!)(,. i)-(i-f)
Then the conjectured relation (27) is equivalent to the conjecture

(30) Œ ~ 2e~y = 1.1229.

Now from the sieve for n 4- 1, [3], we can obtain an exact formula for D(N)

by using the "integer part of x" function, [a;]. Consider the set of numbers obtained

from

d = 2"-5*-13e ■■■ p*1

by assigning (in all possible ways) 0 and 1 to the exponents a, 6, c, ■ • • . For each

such d, let Ai be the solutions of

A2 m -1 (modd)

which satisfy

0 S A < d.

Then if d is a product of a primes, we have

(31) D(N) -Ç(-l)«Çpl+iil

It may be seen that if there are M primes of the form 4m + 1 which are ^N,

then there will be 2-3" terms in this sum. Even for a very modest N, say 15, we

have p* = 13, M = 2, and there are already 18 terms. Specifically,

Dim , m - [ï+i] _ p+5] _ [£+*] + [Í+I] + [ï+i]

+[^]+m+F**] - [^-3] - F&*]
[JV + 57] _ [AT 4- 47]
L    130    J      L    130    J"

In general, it is easily seen, the formula for S(N) may be obtained from that

for D(N) by deleting the A, and the square brackets. Thus for ¿V = 15 in the ex-

ample, we have

D/.n       ,r      N      2N  ,   2N      2N  ,2N  ,  4AT       4W

-HX'-iX-á)-
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Table 6

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

S(N)

16.261
28.252
39.800
50.696
61.344
71.763
81.656
91.345

101.075
110.901
119.913
129.451
138.223
147.754
156.790

D(N)

15
28
42
51
62
68
78
87
92

102
112
122
128
140
150

S(N)/D(N)

1.016
1.009
0.948
0.994
0.989
1.055
1.047
1.050
1.099
1.087
1.071
1.061

080
055

1.045

For AT small, S(N) and D(N) are nearly equal; e.g., S(15) = 3.81, D(15) = i

As N increases, S(N) gradually pulls ahead of D(N), as is seen in Table 6.

The end effect

e(N) = S(N) - D(N)

■OO-Ci-U-cß-p^]

is given by

(32)

Since the quantity in each brace is smaller in magnitude than unity, it is easy

enough to bound e(N). What is difficult to obtain is a sufficiently good bound—that

is, to prove in general, the extensive cancellation of terms of opposite sign which

occurs in the sum of (32). The essential difficulty stems from the very rapid increase

in the number of terms, 2^3^.

Techniques of deleting or combining terms, in sieve formulations of related

problems, have been devised by Brun and others [11] but to date nothing sufficiently

sharp has been developed. A general assessment of sieve techniques given by Selberg

[12] is not encouraging.
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